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Abstract. We present the High-Elective Resolution Modelling Emission System version 3 (HERMESv3), an open source, 

parallel and stand-alone multiscale atmospheric emission modelling framework that computes gaseous and aerosol emissions 

for use in atmospheric chemistry models. HERMESv3 is coded in Python and consists of a global_regional module and a 

bottom_up module that can be either combined or executed separately. In this contribution (Part 1) we describe the 

global_regional module, a highly customizable emission processing system that calculates emissions from different sources, 10 

regions and pollutants on a user-specified global or regional grid. The user can flexibly define combinations of existing up-to-

date global and regional emission inventories and apply country specific scaling factors and masks. Each emission inventory 

is individually processed using user-defined vertical, temporal and speciation profiles that allow obtaining emission outputs 

compatible with multiple chemical mechanisms (e.g. Carbon-Bond 05). The selection and combination of emission inventories 

and databases is done through detailed configuration files providing the user with a widely applicable framework for designing, 15 

choosing and adjusting the emission modelling experiment without modifying the HERMESv3 source code. The generated 

emission fields have been successfully tested in different atmospheric chemistry models (i.e. CMAQ, WRF-Chem and NMMB-

MONARCH) at multiple spatial and temporal resolutions. In a companion article (Part 2) we describe the bottom_up module, 

which estimates emissions at the source level (e.g. road link) combining state-of-the-art bottom-up methods with local activity 

and emission factors. 20 
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1 Introduction 

Emission inputs of trace gases and aerosols play a key role in the performance of atmospheric chemistry models for air quality 

research and forecasting applications. Depending on the purpose of the application, an atmospheric chemistry model may be 

applied at global, regional or local (urban) scales. Similarly, the level of coverage and detail required for the emission input 

data will vary according to the type of study and modelling scale (e.g. Borge et al., 2014).  5 

 

For global and regional modelling, emissions are typically estimated at country level (combining national statistics and 

technology-dependent emission factors), and then disaggregated using spatial proxies such as population density and land use. 

Different global and regional emission inventories are continuously being developed and made publicly available by research 

groups and international programs such as the Global Emissions Initiative (GEIA) (Frost et al., 2013). These inventories 10 

usually report total annuals per primary pollutant and source sector distributed over a rectangular grid at resolutions ranging 

from 1º by 1º to 0.1º by 0.1º. The practical use of these inventories suffers from several problems. On the one side, the reporting 

format is not directly compatible with the emission input requirements of atmospheric chemistry models as these typically 

ingest hourly and chemical species-based emissions over other grid projections and resolutions using specific file formats and 

conventions. On the other side, there are substantial discrepancies in the total emissions, sectorial emission shares, spatial 15 

distribution, and pollutant sources considered between the available inventories and therefore in their respective behaviour 

when used in atmospheric chemistry models (e.g. Granier et al., 2011; Trombetti et al., 2018; Saikawa et al., 2017). A potential 

remedy for the latter is to combine different inventories and apply adjustment factors in order to improve the representativeness 

of the emission data and the air quality modelling results (e.g. Rémy et al., 2017). All in all, the incorporation of emission data 

into atmospheric chemistry models usually implies laborious programming in order to combine, adjust and adapt the original 20 

inventories to the model requirements. 

 

Global and regional inventories are too imprecise for urban scale modelling applications (e.g. Timmermans et al., 2013). 

Emission and activity factors lack specificity for the local conditions of interest (e.g. Guevara et al., 2014), and the spatial 

proxies used to allocate the emissions are of poor quality and may not apply to certain emission processes (e.g. Lopez-Aparicio 25 

et al., 2017). These inventories are for example limited when it comes to predict and assess the impact of emission reduction 

measures upon local air quality such as the change of speed limits (e.g. Baldasano et al., 2010) or the penetration of new 

vehicle technologies (e.g. Soret et al., 2014). Consequently, working at the urban scale requires dedicated local emission 

inventories combining activity data collected at a fine spatial scale (e.g. point source, road links, household) with bottom-up 

detailed emission algorithms that represent the different factors influencing the emission processes (e.g. vehicle speed, outdoor 30 

temperature).  
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In this paper and a companion paper (Guevara et al. in preparation), we describe the newly developed High-Elective Resolution 

Modelling Emission System version 3 (HERMESv3). HERMESv3 is a multiscale, open-source emission modelling framework 

that consists of two independent modules that can be either combined or executed separately: (i) the global_regional module 

and (ii) the bottom_up module. The global_regional module is a highly customizable emission processing system that 

calculates emissions from different sources, regions and pollutants on a user-specified global or regional model grid. The user 5 

can easily define combinations of existing global and regional emission inventories, which are individually processed using 

vertical, temporal and speciation profiles, and apply regional scaling factors and masks. The generated emission fields have 

been tested for different chemical mechanisms and atmospheric chemistry models, including CMAQ (Appel et al., 2017), 

WRF-Chem (Grell et al., 2005) and NMMB-MONARCH (Badia et al., 2017) models, and can be easily adapted to other 

models, grids or chemical mechanisms upon demand.  10 

 

The bottom_up module is an emission model that can be used to estimate emissions at the source level (e.g. road link, industrial 

facility, crop type) and hourly level combining state-of-the-art estimation methods with local activity and emission factors 

along with meteorological data. This model covers the estimation of bottom-up emissions from point sources (e.g. power and 

manufacturing industries), road transport, residential combustion and agricultural activities (manure management, fertilizer 15 

application and crop operations), as well as the modelling of highly detailed emission scenarios for air quality planning studies. 

Besides the aforementioned atmospheric chemistry models, the emission outputs of this module are also adapted for their 

application with the R-LINE urban dispersion model (Snyder et al., 2013). 

 

We conceive HERMESv3 as a flexible multiscale modelling framework that allows integrating and combining different 20 

emissions estimation approaches, so that the emission related outputs can be as detailed and specific as possible for the different 

domains (global, regional or local) involved in the corresponding application.  

 

The development of HERMESv3 is based on the knowledge acquired from previous versions of HERMES for Spain 

(Baldasano et al, 2008; Guevara et al., 2013), Europe (Ferreira et al., 2013) and Mexico City (Guevara et al., 2017) that have 25 

been developed at the Earth Sciences Department of the Barcelona Supercomputing Center (BSC) during the last decade. Other 

existing emission software such as HEMCO (Keller et al., 2014) and PREP-CHEM-SRC (Freitas et al., 2011) have also been 

taken as a reference for the development of HERMESv3. 

 

In this paper (Part 1) we provide a description of the global_regional module (herein referred to as HERMESv3_GR). The 30 

bottom_up module is described in the companion paper (Part2; Guevara et al., in preparation). The paper is organized as 

follows. Section 2 describes the processing system and its main functionalities together with some illustrative examples of the 

outputs that can be generated with this tool. Section 3 describes some of the current implementations of HERMESv3_GR for 

air quality modelling. Finally, Section 4 presents the main conclusions of this work. 
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2 Description of HERMESv3 

2.1 Overview 

Figure 1 shows a schematic representation of the structure of HERMESv3_GR along with the execution workflow. 

HERMESv3_GR first defines the destination grid and selects the emission inventories (see Sect. 2.2), and the vertical, temporal 

and speciation profiles based on the specifications defined by the user in the general and emission inventory configuration files 5 

(see Sect. 2.3 and 2.4, respectively). During the initialization process, HERMESv3_GR automatically creates a set of auxiliary 

files that are subsequently used during the emission calculation process. These auxiliary files, including the output grid 

description, the time zones and the country mask, are specific to each new working domain and are stored by default after their 

creation so that they can be reused in subsequent executions. The emissions are calculated in four steps that are applied to each 

pollutant sector and species of the selected original emission inventories. These four steps include: (i) the spatial regridding 10 

from source grid to destination grid (see Sect. 2.5.1), (ii) the mass distribution over model vertical layers (see Sect. 2.5.2), (iii) 

the temporal disaggregation (see Sect. 2.5.3) and (iv) the speciation mapping depending on the selected gas phase and aerosol 

chemical mechanisms (see Sect. 2.5.4). The emission calculation can combine inventories that cover different geographic 

domains and/or emission sectors. To prevent spatial overlapping between inventories a masking functionality is included 

during the regridding phase. The user can define country-specific masks that restrict the applicability of the original inventory 15 

to a given region, and country-specific scaling factors. Once the emissions have been processed, HERMESv3_GR writes the 

output file following the requirements and conventions of the atmospheric chemistry model selected by the user in the general 

configuration file (see Sect. 2.5.5). 

 

For each grid cell x and vertical layer l on the destination domain, and requested output species e, HERMESv3_GR computes 20 

the output hourly emissions following Eq. (1). 

𝐸_𝑜𝑢𝑡(𝑥, 𝑙)𝑒 = ∑ ∑ ∑ {𝐸_𝑖𝑛(�̅�) ∗ 𝑅𝐹(�̅�) ∗ 𝑉𝐹(�̅�, 𝑙) ∗ 𝑇𝐹 ∗ 𝑆𝐹}�̅�,𝑠,𝑖
�̅�
�̅�=1

𝑆
𝑠=1

𝐼
𝑖=1  ,       (1) 

 

Where 𝐸_𝑖𝑛(�̅�)𝑒̅,𝑠,𝑖 is the input emission flux (kg m-2 s-1) of the species �̅� and pollutant sector s reported by inventory i on the 

source grid cell �̅�. 𝑅𝐹(�̅�)𝑒̅,𝑠,𝑖  is the remapping weight value from source grid cell �̅� to the destination grid cell x associated to 25 

species �̅� and pollutant sector s of inventory i. 𝑉𝐹(�̅�, 𝑙)�̅�,𝑠,𝑖 is the vertical weight factor for layer l and source grid cell �̅� assigned 

to species �̅� and pollutant sector s of inventory i (0 to 1). 𝑇𝐹�̅�,𝑠,𝑖  is the temporal weight factor t assigned to species �̅� and 

pollutant sector s of inventory i. 𝑆𝐹�̅�,𝑠,𝑖 is the speciation factor assigned to species �̅� and pollutant sector s of inventory i. The 

final 𝐸_𝑜𝑢𝑡(𝑥, 𝑙)𝑒 is hourly emission for output species e in destination grid cell x, layer l and is the sum of: (i) all �̅� source 

grid cells �̅� that contribute to destination grid cell x, (ii) all S employed pollutant sources s and (iii) all I used emission 30 

inventories i. The units of the output emissions will vary according to the atmospheric chemistry model selected by the user. 

𝑅𝐹(�̅�)𝑒̅,𝑠,𝑖 and 𝑇𝐹�̅�,𝑠,𝑖 are computed following Eq. (2) and Eq. (3), respectively. 
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𝑅𝐹(�̅�)𝑒̅,𝑠,𝑖 = 𝑊(�̅�)𝑖 ∗ {𝑀𝐾(�̅�) ∗ 𝑆𝐶(�̅�)}𝑒̅,𝑠,𝑖 ,          (2) 

𝑇𝐹�̅�,𝑠,𝑖 = {𝑀(𝑚) ∗ 𝐷(𝑑) ∗ 𝐻(ℎ)}𝑒̅,𝑠,𝑖 ,           (3) 

 

Where 𝑊(�̅�)𝑖  is the interpolation weight value that describes how the source grid cell �̅� contributes to the destination grid cell 

x (0 to 1). 𝑀𝐾(�̅�)�̅�,𝑠,𝑖 is the masking factor assigned to species �̅� and pollutant sector s of inventory i on the source grid cell �̅� 5 

(1 or 0). 𝑆𝐶(�̅�)𝑒̅,𝑠,𝑖 is the scaling factor assigned to species �̅� and pollutant sector s of inventory i on the source grid cell �̅�. 

𝑀(𝑚)�̅�,𝑠,𝑖 is the monthly factor for month m assigned to species �̅� and pollutant sector s of inventory i (0 to 12). 𝐷(𝑑)�̅�,𝑠,𝑖 is 

the daily factor for day d assigned to species �̅� and pollutant sector s of inventory i (0 to 28,29,30 or 31 depending on the total 

number of days for month m). 𝐻(ℎ)�̅�,𝑠,𝑖  is the hourly factor for hour h assigned to species �̅� and pollutant sector s of inventory 

i (0 to 24). 10 

 

2.2 Emission data library and preprocessing 

Table 1 lists all the global and regional inventories currently included in the HERMESv3_GR emission data library. On 

demand, new emission datasets can be added. At global scale, the inventories proposed for anthropogenic emissions include 

the Air Pollutants and Greenhouse Gases Emission Database for Global Atmospheric Research (EDGAR v4.3.2_AP, Cripa et 15 

al., 2018, EDGARv4.3.2_VOC, Huang et al., 2017), the Community Emissions Data System (CEDS, Hoesly et al. 2018) and 

the datasets derived from the Task Force Hemispheric Transport of Air Pollution community (HTAPv2.2, Janssens-Maenhout 

et al., 2015) and the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants project (ECLIPSEv5.a, Klimont 

et al., 2017). Also at global scale, biomass burning emissions are provided by the Global Fire Assimilation System (GFASv1.2, 

Kaiser et al. 2012), whereas open burning of domestic waste and volcanic degassing emissions can be estimated using the 20 

inventories reported by Wiedinmyer et al. (2014) and Carn et al. (2017), respectively. Two European regional anthropogenic 

emission inventories are also included, namely the TNO-MACC_III (Kuenen et al., 2014) and the EMEP (Mareckova et al., 

2017). The emission data library compiles gaseous (NOx, CO, NMVOC, SOx, NH3) and particulate (PM10, PM2.5, BC, OC) 

air pollutant emissions. Depending on the inventory, NMVOC emissions are reported as a single category (e.g. ECLIPSEv5.a), 

by individual species (e.g. GFASv1.2) or following the 25 species groups as proposed within the Global Emission Inventory 25 

Activity (GEIA) (Olivier et al., 1996) (e.g. EDGARv4.3.2_VOC). Most of the inventories are reported at the monthly level 

and include time series with multiple base years (past, present and future). 

 

For each inventory, a specific pre-processing function has been developed to rewrite the original datasets on a common format. 

All the gridded emission inventory input files used by HERMESv3_GR: (i) are in the Network Common Data Form (NetCDF) 30 

format (http://www.unidata.ucar.edu/software/netcdf/), (ii) adhere to the Climate and Forecast (CF1.6) Metadata Conventions, 

(iii) include information of the cell centroids, boundary coordinates and cell areas of the working domain (needed for the 
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conservative remapping, see Sect. 2.5.1), (iv) report emissions in the same units (kg m-2 s-1), (v) follow a unique pollutant 

naming convention and (vi) follow a unique file data storage convention (Sect. 2.4). All the pre-processing functions used to 

transform the original inventories are included in the code repository. Exceptionally, point source emission inventories (e.g. 

volcanic degassing emissions) are stored in CSV files that include information on the name of each source (e.g. name of the 

volcanoes), geographic coordinates, altitude of injection of the emissions (in meters) and total amount of annual emissions (in 5 

kg s-1). For this type of inventory, no pre-processing function is needed and it is expected that the user directly provides the 

data in the required format.  

 

HERMESv3_GR only includes anthropogenic, biomass burning and volcano emission inventories. Natural emissions such as 

biogenic NMVOCs, mineral dust aerosols, Ocean DMS or lightning and soil NO, which have functional dependencies on 10 

meteorological variables, are assumed to be calculated online during the execution of the corresponding atmospheric chemistry 

model (e.g. NMMB-MONARCH dust module; Pérez et al., 2011) or using specific emission models (e.g. MEGANv2.1; 

Guenther et al., 2012).  

2.3 General configuration file 

The general configuration options (e.g. start and end date, output file name, working domain description) can be passed to 15 

HERMESv3_GR via a configuration file, arguments or a combination of both. The arguments passed by command line takes 

priority from the ones that appear in the configuration file. 

 

The general configuration file is divided in four different sections (see example in Appendix 1): 

 General: this section defines the main paths of the processing system (i.e. input, output, data), the name of the output 20 

emission file and time step configuration parameters, including start and end dates, temporal resolution (i.e. monthly, 

daily, hourly) and number and frequency of time steps (e.g. 24 time steps every 3 hours).  

 Domain selection: this section defines the working grid where emissions will be calculated (e.g. spatial extension, 

horizontal and vertical description). Currently, HERMESv3_GR can calculate emissions on grids with the following map 

projections: regular lat-lon for global domains and rotated lat-lon and lambert conformal conic for regional domains. Other 25 

coordinate systems and combinations (e.g. regular lat-lon for regional domains) could be added upon request. In this 

section of the configuration file, the user also selects the format of the output emission file. Currently, HERMESv3_GR 

is able to write NetCDF emission output files following the CMAQ, WRF-Chem or NMMB-MONARCH conventions, 

and can be easily extended to other projections and atmospheric chemistry model conventions. 

 Emission inventory configuration: this section defines the path to the file describing the configuration of the emission 30 

inventories (see Sect. 2.4). 

 Profiles selection: this section defines the profile files that will be applied to perform the vertical distribution, temporal 

disaggregation and speciation treatment of the original emission inventories (see Sect. 2.5.1 to 2.5.4). 
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2.4 Emission inventory configuration file 

The emission inventory configuration file allows the user to select the base emission inventories, pollutant sectors and species 

to combine and overlay for their simulations, and to choose the corresponding temporal, vertical and speciation profiles and 

optional scaling and masking factors that will be applied to the original emissions for their adaptation to the CTM requirements. 

Each line of the emission inventory configuration file belongs to a specific emission inventory, pollutant sector and pollutant 5 

species group, for which the user can define:  

 

 Country-specific scaling factors that multiply the original emissions. 

 Country-specific masks that restrict the applicability of the original inventory to a given region. 

 A vertical profile to distribute the original emissions across the vertical layers of the working domain. 10 

 A monthly, daily and hourly profile to temporally disaggregate the original emissions. 

 A speciation profile to map the original pollutants species to a specific gas phase and aerosol chemical mechanism. 

 

Figure 2 shows five examples of emission inventory configuration files and the resulting emission outputs calculated by 

HERMESv3_GR. The first column (“ei”) indicates the name of the emission inventory, followed by the name of the pollutant 15 

sector (“sector”), the reference year of the emission inventory (“ref_year”), the requested pollutant species to be computed 

(“pollutants”) and a field that indicates if this sector is activated or not (“active”, 0 or 1). HERMESv3_GR combines all this 

information in order to select the corresponding file from the emission data library. In the first example (Fig. 2a), we selected 

the 2010 HTAPv2.2 organic carbon (OC) transport emissions, while in the second one (Fig. 2b) this inventory is combined 

with OC biomass burning emissions from GFASv1.2. The resulting output shows an increase of emissions in those areas 20 

typically affected by forest fires (e.g. Central Africa). 

 

The following two columns of the configuration file are optional parameters that can be used to define country-specific scaling 

factors that multiply the original emissions (“factor_mask”) and country-specific masks that restrict the applicability of the 

original emissions to the defined region (“regrid_mask”). Country-specific scaling factors are defined combining the ISO 25 

3166-1 alpha-3 country code of the targeted country (https://unstats.un.org/unsd/tradekb/knowledgebase/country-code) with a 

numerical factor. Scaling factors for more than one country need to be separated by a comma. Our third example (Fig. 2c) 

shows the original 2010 HTAPv2.2 OC transport emissions scaled by a factor of 5 in China and 0.5 in India (CHN 5, IND 

0.5). On the other hand, country-specific masks are defined using the ISO 3166-1 alpha-3 country code preceded by either a 

“+” sign, which restricts the applicability of the inventory only to the targeted country, or a “-“ sign, which restricts the 30 

applicability of the inventory to all the countries except the targeted one. The masks defined by the user can include more than 

one country. In the fourth example (Fig. 2d), the HTAPv2.2 OC transport emissions are restricted to all countries except China 

and India (- CHN,IND), while in the fifth example (Fig. 2e) the OC transport emissions from ECLIPSEv5a are only applied 
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to China and India (+ CHN,IND). A comparison between Fig. 2a and Fig. 2e shows that ECLIPSEv5a reports higher OC 

transport emissions in China and India, which may be related to the inclusion of emissions from high emitting vehicles, a 

sector not included in the HTAPv2.2 inventory (Janssens-Maenhout et al., 2015). 

 

Column “frequency” defines the temporal resolution of the inventory (i.e. annual, monthly, daily). Column “path” defines the 5 

root path of the emission files of each inventory. For all inventories, the root path consists of the common “<data_path>” 

defined in the general configuration file followed by the name of the institution providing the inventory, the name of the 

inventory and the temporal frequency. As shown in the first example, the root path of the HTAPv2.2 emission files is 

“<data_path>/jrc/htapv22/monthly_mean”. 

 10 

The alphanumeric codes specified in columns “p_vertical”, “p_month” “p_day” “p_hour” and “p_speciation” refer to the 

vertical, monthly, daily, hourly and speciation profile IDs assigned to process the original emissions. All the codes are cross-

referenced with text files where the vertical, temporal and speciation numerical factors are defined. As shown in the first 

example, the “p_hour” field allows the user to define specific diurnal profiles for weekdays, Saturdays and Sundays, which 

may be of relevance for certain pollutant sectors such as road transport (e.g. Mues et al., 2014). For the GFASv1.2 biomass 15 

burning emissions (second example), the “p_vertical” field is not filled with a vertical profile ID but with two parameters that 

define: (i) the maximum altitude of the fire plume injection height (“method”) and (ii) how the emissions are distributed across 

the layers below this maximum height (“approach”) (see Sect. 2.5.2). Finally, the “comment” column is an optional field in 

which the user can add an observation. 

2.5 Emission core module 20 

The following sections describe the main functionalities of HERMESv3_GR, namely the spatial, vertical, temporal and 

speciation processing of the original emissions and the writing of the output file. 

2.5.1 Spatial regridding 

This function regrids the selected inventories from their original source grid to the user-defined destination grid. The regridding 

process consists of two steps. The first step uses the Earth System Modeling Framework (ESMF) regrid weight generation 25 

application (Hill et al., 2004) to calculate an interpolation weight matrix that describes how points in the source grid contribute 

to points in the destination grid. The interpolation method is first-order conservative, where the weight calculation is based on 

the ratio of the source cell area overlapped with the corresponding destination cell area. The second step is the multiplication 

of the emissions on the source grid by the interpolation weight matrix and, if previously defined by the user in the emission 

inventory configuration file, the corresponding scaling and/or masking factors to produce emissions on the destination grid. 30 

Country-specific scaling and masking factors are generated with a gridded country mask created during the initialization 

process.  
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In the case of point source inventories (e.g. volcano degassing emissions) that are not reported on a regular grid but on specific 

lat-lon locations, the remapping is performed using a nearest destination to source approach. (When multiple source points are 

mapped into the same grid cell, the destination is the sum of the source emission values.) For point source emissions, neither 

scaling nor masking options are available, as the user can directly modify and/or erase individual point sources in the 5 

corresponding inventory input file. 

 

The regridding process allows the user to interpolate the original emissions to global or regional grids with flexible spatial 

resolutions and several map projections, including regular lat-lon, rotated lat-lon, lambert conformal conic and mercator. Other 

map projections (e.g. polar stereographic) can potentially be added to the processing system in future releases. Figure 3 shows 10 

an example of the 0.1x0.1 degree HTAPv2.2 black carbon (BC) transport emissions interpolated to: (a) a 1 by 1.4 deg global 

regular lat-lon domain, (b) a 0.1 by 0.1deg regional rotated lat-lon domain, (c) a 50 by 50 km regional mercator grid and (d) a 

4 by 4 km regional lambert conformal conic grid. 

2.5.2 Vertical distribution 

Once the emissions are allocated in the horizontal grid, the next step is to distribute them across the vertical layers of the 15 

destination domain. For this task, two input files are required: (i) a CSV file containing a description of the domain’s vertical 

layers (i.e. approximate heights above the ground of the top of each vertical layer, in meters) and (ii) a CSV file containing a 

description of the vertical profile ID previously assigned by the user in the emission inventory configuration file (i.e. fraction 

of emissions assigned to each vertical layer, between 0 and 1). Using this information, HERMESv3_GR interpolates the 

original emissions to the modelling domain layers. 20 

 

Figure 4 shows a graphical example of how the vertical distribution is performed. In the example, the destination modelling 

domain is defined as 6 layers with top heights of 75, 140, 190, 500 and 1200 m a.g.l. On the other hand, the proposed vertical 

profile ID (V001) indicates that 0% of the total emissions should be assigned between 0 and 100 m a.gl., 10% between 100 

and 200 m.a.g.l and the remaining 90% between 200 and 1000 m a.g.l. Note that the number and description of the vertical 25 

layers used to define the vertical profiles do not have to match with the ones of the destination domain. HERMESv3_GR 

internally interpolates homogenously the original weight fractions to the modelling domain’s layers taking into account the 

thickness of each layer.  

 

The user is able to define and assign any vertical profile to any emission inventory/pollutant sector/pollutant species. Some 30 

suggested vertical profiles for the energy and manufacturing industry (Bieser et al., 2011) and the air traffic sectors (Olsen et 

al., 2013) are included in the HERMESv3_GR database. 
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For the GFASv1.2 biomass burning inventory, the vertical emission distribution is not performed with a fixed vertical profile 

but using two parameters that define: (i) the maximum altitude of the fire plume injection height (“method”) and (ii) how the 

emissions are distributed across the layers below this maximum height (“approach”). The fire plume injection height is directly 

provided by GFASv1.2 following two different methods. The first method (“sofiev”) is based on a semi-empirical 

parameterisation detailed in Sofiev et al. (2013). The second method (“prm”) consist on a plume rise model described by 5 

Paugam et al. (2015). Regarding the approach, two options exist as well. The first one (“uniform”), consist on distributing 

uniformly all the emissions across the layers below the maximum injection height. The second one (“50_top”) indicates that 

50% of all emissions are allocated in the vertical layer that intersects with the maximum injection height, and the other 50% 

are distributed uniformly across the layers below the maximum injection height. The user has to select both the method and 

approach to use in the emission inventory configuration file. 10 

 

Similarly, in the case of point source emission inventories (e.g. volcano degassing), the vertical distribution is not defined 

using a fixed vertical profile but with the injection height field included in the input inventory file, which can be adjusted 

individually for each point source. Emissions are distributed homogenously across all the layers below the defined injection 

height. 15 

2.5.3 Temporal distribution 

This process distributes temporally the emissions from their original resolution (e.g. annual) to the one defined by the user 

(monthly, daily or hourly). The emissions are multiplied by the user-defined monthly, weekly and hourly weight factors, which 

are specified on separated CSV files with the corresponding profile ID (i.e. “MXXX”, “DXXX” and “HXXX” for monthly, 

weekly and hourly profiles, “XXX” being a three-digit numeric code that starts at “001”). Alternatively, users can also provide 20 

the temporal profiles using gridded files, which contain specific weight factors for each grid cell. 

 

As in the case of the vertical profiles, the user is left free to define and assign any temporal profile to each pollutant sector and 

species. The HERMESv3_GR database includes by default the monthly, daily and hourly temporal profiles reported by 

LOTOS-EUROS (Denier van der Gon et al., 2011), which are partially based on the GENEMIS project (Friedrich and Reiss, 25 

2004) and Hodzic et al (2012). 

  

HERMESv3_GR estimates emissions in Universal Time Coordinate (UTC). However, all the user-defined hourly temporal 

profiles need to be introduced in Local Standard Time (LST). For each cell of the destination grid and time step, 

HERMESv3_GR converts the UTC simulation date to the corresponding LST and assigns to it the adequate local temporal 30 

factor. This conversion is done using as a basis a time zone grid created during the initialization process. Having the time zone 

information of each cell allows HERMESv3_GR to take into account Daylight Saving Time (DST) changes, which do not 

necessarily occur on the same date every year and in every country.  
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Figure 5 shows an example of the 6-hourly evolution (00, 06, 12 and 18h UTC) of the ECLIPSEv5a NOx transport emissions 

for a 24h simulation performed on a 0.5 by 0.7 degree global grid for the 23rd of February 2015. It is observed how the diurnal 

variation of emissions in different cities is in line with their local time. For instance, at 00:00h UTC time (first time step of the 

simulation), emissions in China are at their morning peak (08:00h LST), whereas in Barcelona are at their minimum (01:00h 5 

LST) and in New York close to their afternoon peak time (19:00h LST).  

 

The application of gridded profiles can be of importance for those emission sectors whose temporal variation is not uniform 

across the space due to local influences such as temperature (e.g. residential combustion emissions) or farming practices (e.g. 

agricultural emissions). Figure 6 compares the monthly agricultural soil NH3 emissions (March and June 2010) reported by 10 

EDGARv432 in East Asia when using its default temporal profile (Figures 6.a and c) and when combined with updated gridded 

temporal weights obtained from the inventories reported by Zhang et al. (2018) for China and Paulot et al. (2014) for rest of 

the world (Fig. 6b and 6d). Results show large differences between the two results, especially in China and India, the main 

emitter countries for this sector. According to Fig. 6.e, in China the default profile allocates most of the emissions in March, 

whereas the updated temporal profile gives more weight to the months of June and July. Similarly, the default profile presents 15 

a flat distribution over India, whereas the improved profile indicates a peak during the months of May and June (Fig. 6f). In 

both cases, the updated monthly distribution is more in line with the seasonality of the NH3 volume mixing ratio derived from 

the NASA's Atmospheric Infrared Sounder (AIRS) instrument (Warner et al., 2017). 

2.5.4 Speciation mapping 

This process maps the pollutants provided in the original emission inventories to the species needed by the atmospheric 20 

chemistry model of interest and its corresponding gas phase and aerosol chemical mechanism. The mapping is performed using 

a speciation CSV file, in which the user defines the mapping expressions between the source and destination species. Each 

line of the speciation file corresponds to a specific profile, which is cross-referenced with the profile ID previously defined in 

the emission inventory configuration file (i.e “EXXX”, “XXX” being a three-digit numeric code that starts at “001”). The 

columns of the file refer to the names of the destinations species, which need to match the atmospheric chemistry model 25 

registry names of the emission variables. For gas-phase primary species (e.g. NOx, CO, NH3, SO2, NMVOCs) a conversion 

from mass to moles is performed before executing the speciation mapping. 

 

The HERMESv3_GR database includes speciation profiles for the Carbon Bond 05 (CB05, CB05e51) (Whitten et al., 2010) 

and the Regional Acid Deposition Model 2nd generation (RADM2) (Stockwell et al., 1990) gas-phase mechanisms, as well as 30 

the fifth and sixth-generation aerosol modules (AERO5, AERO6) (Roselle et al., 2008; Appel et al., 2017) and the Modal 

Aerosol Dynamics Model for Europe with the secondary organic aerosol model (MADE/SORGAM) aerosol mechanisms 

(Ackermann et al., 1998; Schell et al., 2001). For NMVOCs, most of the proposed speciation profiles are based on the 
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availability of mapping tables described in Carter (2015), as well as on previously reported profiles (Simpson et al., 2012). In 

the case of PM2.5, mappings are mostly based on the SPECIATE (Simon et al., 2010) and SPECIEUROPE (Pernigotti et al., 

2016) databases and the works by Visschedijk et al. (2007) and Reff et al. (2009). As in the case of the temporal and vertical 

weight factors, the user can create its own speciation profiles using other sources of information. 

 5 

:  shows two examples of proposed speciation profiles included in the HERMESv3_GR database. The first one maps the 

original GFASv1.2 emission species to the CB05 gas-phase and AERO5 aerosol chemical mechanisms. As shown, original 

NOx are mapped to the CB05 species nitrogen monoxide (NO), nitrogen dioxide (NO2) and nitrous acid (HONO) using weight 

factors of 72% (“nox_no*0.72”), 18% (“nox_no*0.18”) and 10% (“nox_no*0.1”) (Burling et al., 2010). The terminal olefin 

bond (OLE) CB05 species is composed of the following GFASv1.2 NMVOCs: C8H16, C5H10, C3H6, C4H8, C6H12 and 50% of 10 

other high alkanes (“c8h16+c5h10+c3h6+c4h8+c6h12+0.5*hialkanes”). On the other hand, the difference between total 

primary PM2.5 and carbonaceous species (OC and BC) is mapped to the other fine aerosols (PMFINE) AERO5 species 

(“pm2.5-oc-bc”). In the second example, the CEDS road transport emissions are mapped to the RADM2 gas-phase mechanism 

and the MADE/SORGAM aerosol module. NOx are directly mapped to the nitrogen oxides (NO) RADM2 species 

(“nox_no2”). The toluene (TOL) RADM2 species is estimated to be the sum of the voc14 (toluene) and 29.3% of the voc13 15 

(benzene) GEIA groups (“0.293*voc13+voc14”). Total BC emissions are assumed to be 20% in nucleation mode (ECI, 

“bc*0.2”) and 80% in accumulation mode (ECJ, “bc*0.8”) (Tuccella et al., 2012). As shown in these examples, the mapping 

expressions can combine different types of mathematical expressions (i.e. addition, subtraction, multiplication).  

2.5.5 Writing module 

The calculated emissions are written in NetCDF4 uncompressed files following the conventions of the selected atmospheric 20 

chemistry model. During this process, the following actions take place: (i) conversion of units, and (ii) inclusion of mandatory 

global attributes.  

2.6 Technical implementation 

HERMESv3_GR is coded using Python 2.7.X and requires numpy (>= 1.9.1), netCDF4 (>= 1.3.1), cdo (>= 1.3.3), pandas (>= 

0.22.0), geopandas (>= 0.4.0), pyproj (>= 1.9.5.1), configargparse (>= 0.11.0), cf_units (>= 1.1.3), ESMPy (>= 7.1.0), holidays 25 

(>= 0.4.1), pytz (>= 2017.2), timezonefinder (>= 2.1.0), mpi4py (>= 3.0.0) and pytest (>= 3.6.1) Python libraries.  

 

The emission core module of HERMESv3_GR is parallelized using a domain decomposition strategy. This approach is 

considered to be the most effective since emissions are computed independently for each destination grid cell and no 

communication between cells is needed during the calculation process (see Eq (1)). Moreover, applying domain decomposition 30 

also allows decreasing the memory consumption per computational node. 
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Figure 7 shows a schematic representation of the domain decomposition strategy applied in HERMESv3_GR. During the 

spatial regridding, the destination working domain is divided into vertical sections, maintaining each column undividable. The 

number of divisions is equal to the number of processors to be used (P_0, P_1, …), which is defined by the user. The emission 

regridding process is performed independently in each processor and for each vertical section. The maximum number of cores 

to be used is equal to half of the number of columns of the destination domain. This limitation is defined by the ESMF software, 5 

which needs, at least, two complete columns to perform the spatial regridding. The 2D regridded emissions are kept in memory 

until the writing operation. During this task, the vertical (v0, v1, …) and temporal (t0, t1, …) weight factors previously 

estimated in the vertical and temporal distribution functions are applied to each emission subdomain in order to transform the 

2D arrays (longitude, latitude) into 4D arrays (time, vertical layer, longitude, latitude). This strategy allows reducing the time 

during which the memory consumption is higher. Finally, each worker process writes simultaneously its result to a common 10 

NetCDF4 file, which ensures the gathering of the different subsets of the working domain into a single output. 

 

A scalability test was performed using the supercomputer MareNostrum4, which is host by the BSC, in order to determine the 

capability of HERMESv3_GR to scale up the emission calculation process. MareNostrum 4 is a supercomputer based on Intel 

Xeon Platinum processors at 2.1 GHz from the Skylake generation. It is a Lenovo system composed of SD530 Compute Racks, 15 

an Intel Omni-Path high performance network interconnect and running SuSE Linux Enterprise Server as operating system. It 

consists of 48 racks housing 3456 nodes, each one equipped with 48 cores and 96Gb of memory (2Gb per core) 

(www.bsc.es/marenostrum/marenostrum). HERMESv3_GR was executed using a number of cores from 1 to 510, doubling 

the number in each successive test until using all cores of a node (i.e. 1, 2, 4, 8, …, 48) and then adding 48 (a whole node) 

until 510 (i.e. 96, 144, …, 510).  20 

 

All the tests were performed using a rotated lat-lon destination grid of 0.1x0.1 degrees with 701 rows, 1021 columns and 48 

vertical layers covering North Africa, Europe and the Middle East (Fig. 3b). Hourly CB05 and AERO5 speciated emissions 

were estimated for 24 time steps using as input all the available emission pollutants and sectors of the TNO_MACC_III 

(Europe) and HTAPv2.2 (rest of countries) inventories. 25 

 

As shown in the stacked area chart of Fig. 7, the increased number of cores used in the simulations speeds up the computations. 

The total execution time decreases from 4,841.0s (1 core) to 1,204s (510 cores), the lowest value being observed when using 

32 cores (863.4s). The most time demanding function changes according to the number of cores used. For 1 to 8 cores, most 

of the computational work is done during the spatial regridding (between 54% and 34%) and the temporal distribution (between 30 

39% and 25%), whereas for the other cases (16 to 510 cores), the writing process increasingly becomes the main time consumer 

(up to 83% of the total time when using 510 cores). These results clearly indicate that the writing function does not scale 

properly. The reason behind this behaviour comes from the fact that the netCDF4 Python library writes the results in row-

major order (C-style), while during the spatial regridding ESMF divides the domain in vertical sections (column-major order, 
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FORTRAN-style). For each vertical division, netCDF4 Python has to call the writing function as many times as the number 

of rows that conform the domain. Subsequently, an increase of cores (i.e. an increase of vertical divisions) directly increases 

the execution time of the writing process. The low performance of the writing function will be addressed in future versions of 

HERMESv3_GR by integrating an I/O server that allows writing completed rows in row-major order. Despite this 

shortcoming, the current parallelization strategy allows HERMESv3_GR execution time to be minimized to less than 15 5 

minutes per run (32 cores), which can be considered acceptable in an operational environment. 

3 Implementations 

HERMESv3_GR has been successfully tested in different atmospheric chemistry models. The system is currently implemented 

within the NMMB-MONARCH, which contributes to the multi-model ensemble forecasts of the International Cooperative for 

Aerosol Prediction (ICAP) (www.nrlmry.navy.mil/aerosol/icap.1135.php). HERMESv3_GR has also been coupled with the 10 

CMAQ in the framework of the AIRE-CDMX air quality forecasting system for Mexico City 

(http://www.aire.cdmx.gob.mx/pronostico-aire/). In the first case, HERMESv3_GR is used to provide global primary aerosol 

emissions to the NMMB-MONARCH model, whereas in the AIRE-CDMX it is used to process the biomass burning emissions 

reported by GFASv1.2. Besides the two aforementioned implementations, HERMESv3_GR has been also used to perform 

simulations with the CALIOPE air quality forecasting system, which is based on CMAQ 15 

(http://www.bsc.es/caliope/en/forecasts?language=en) and in several tests using the WRF-Chem model. 

 

4 Conclusions 

This paper presents HERMESv3_GR, a stand-alone multiscale emission processing system that estimates gas and aerosol 

emissions for use in atmospheric chemistry models. HERMESv3_GR is designed to provide a flexible and simplified 20 

framework for the generation of emission input files for global and regional air quality modelling. During the execution, 

emissions from different inventories, sources and species are combined and regridded to the destination domain, and are 

vertically and temporally disaggregated, speciated and converted to the required format of the atmospheric chemistry model 

of interest. HERMESv3_GR is driven by configuration files that provide a flexible and transparent platform for the design and 

implementation of intercomparison and sensitivity modelling experiments. 25 

HERMESv3_GR represents an effort of homogenizing the current available information on emission inventories and of using 

them in a transparent and flexible way to produce emission outputs that can be used directly by multiple atmospheric chemistry 

models. There are several features that makes HERMESv3_GR an unique emission processing system, including: 
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- User-defined grid and choice between different map projections: Emissions can be computed on any global or regional 

domain with a regular lat-lon, rotated lat-lon, mercator or lambert conformal conic projection. 

- Choice between different emission inventories: the emission data library of HERMESv3_GR includes current state-

of-the-art global and regional inventories that cover different sources (anthropogenic, biomass burning, volcanoes), 

pollutants (ozone precursor gases, acidifying gases and primary particulates) and base years (past, present and future). 5 

Moreover, country-specific scaling and masking factors defined by the user can be applied to the base inventories in 

order to combine and adjust them. 

- Choice between different vertical, temporal and speciation profiles: HERMESv3_GR includes a dataset of profiles 

reported by the literature, but it also allows the user to add its own weighting factors for any pollutant sector and 

species. Additionally, the processing system is able to combine base inventories with gridded temporal profiles, which 10 

can be of importance for those pollutant sectors whose temporal variation is not uniform across space (e.g. residential 

combustion emissions and temperature). 

- Choice between different atmospheric chemistry model: The generated emission files can be used as input for the 

CMAQ, WRF-CHEM and NMMB-MONARCH chemical transport models. 

- Choice between different chemical mechanisms: base pollutants can be mapped to several gas-phase and aerosol 15 

chemical mechanism, including CB05, CB05e51, RADM2, AERO5, AERO6 and MADE/SORGAM. All these 

mechanisms are widely used in the air quality modelling community.  

- Parallel implementation: The emission core module of HERMESv3_GR is parallelized using a domain decomposition 

strategy, which allows decreasing the execution time and memory consumption of the model. This feature can be of 

importance when using the processing system in operational air quality forecasting systems, for which the simulations 20 

need to be completed within the required time constraints. 

-  

Several emission outputs obtained with HERMESv3_GR are provided in this paper to illustrate its potential. The software is 

implemented within NMMB-MONARCH and CMAQ in the framework of the ICAP multi-model ensemble and the AIRE-

CDMX air quality forecasting system for Mexico City, respectively. Future works will consider the expansion of the emission 25 

data library to include regional inventories of regions such as Asia or America, emission datasets that are currently being 

developed in the framework of the Copernicus Atmosphere Monitoring Service (CAMS), as well as datasets that report 

emissions of greenhouse gases, so that HERMESv3_GR can also serve as input for climate modelling. Other efforts will focus 

on the implementation of a functionality to handle the remapping of emissions to unstructured destination grids (e.g. octahedral 

grid), which are starting to be widely in global models due to their computational efficiency and effective resolution, as well 30 

as on the improvement of the scalability of the writing function. 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-324
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 7 January 2019
c© Author(s) 2019. CC BY 4.0 License.



16 

 

5 Code availability 

The HERMESv3_GR code package, pre-processing functions to homogenize the emission inventories (listed in Table 1), 

sample configuration and ancillary input files (vertical, temporal and speciation profiles) and a test case data are available at 

the following gitlab repository: https://earth.bsc.es/gitlab/es/hermesv3_gr. A wiki of the processing system with further 

instructions is also included in the gitlab repository, as well as the links and references for downloading and citing the original 5 

gridded emission inventories that HERMESv3_GR can process. The required libraries need to be installed by the user in the 

computer infrastructure where the processing system is planned to be run.  

  

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-324
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 7 January 2019
c© Author(s) 2019. CC BY 4.0 License.



17 

 

6 Appendices 

Appendix A: HERMESv3_GR general configuration file (hermes.conf) 

 

Parameters and examples Description and comments 

[GENERAL]  

log_level = 3 Defines the logging level, which is associated to the amount of 

information that will appear in the log file. The options are 1, 

2 or 3 (recommended for debugging) 

input_dir = /gpfs/projects/HERMESv3/IN Defines the general input directory of the model 

data_path = /gpfs/scratch/data/ Defines the common directory path where all the homogenised 

emission inventories used by HERMESv3_GR are stored. The 

complete path to each specific emission inventory file is 

specified in the emission inventory configuration file  

output_dir = /gpfs/projects/HERMESv3/OUT Defines the directory where the output emission files will be 

stored 

output_name = HERMESv3_<date>.nc Name of the output emission file. The string <date> is 

automatically replaced by the starting date of the simulation 

day. The complete path to the output file is the combination of 

output_dir and output_name. 

start_date = 2010/01/01 00:00:00 Starting date of the simulation (in UTC). Date formats 

accepted by HERMESv3_GR include: 

 YYYYMMDD: 20150101 

 YYYYMMDDhh: 2015010100 

 YYYYYMMDD.hh: 20150101.00 

 YYYY/MM/DD: 2015/01/01 

 YYYY/MM/DD_hh: 2015/01/01_00 

 YYYY/MM/DD_hh:mm:ss: 2015/01/01_00:00:00 

 YYYY/MM/DD hh:mm:ss: 2015/01/01 00:00:00 

 YYYY-MM-DD_hh: 2015-01-01_00 

 YYYY-MM-DD_hh:mm:ss: 2015-01-01_00:00:00 

 YYYY-MM-DD hh:mm:ss: 2015-01-01 00:00:00 

end_date = 2010/01/02 00:00:00 [OPTIONAL]Ending date of the simulation (in UTC). If it is 

not set then end_date = start_date. 

output_timestep_type = hourly  Temporal resolution of the output file. The options are: 

 Hourly 

 Daily 

 Monthly  

output_timestep_num = 24 Number of time steps to simulate 

output_timestep_freq = 1 Frequency between time steps 

[DOMAIN]  

output_model = CMAQ Defines the format of the output emission file as a function of 

the atmospheric chemistry model conventions. Current options 

are:  

 MONARCH 

 CMAQ 

 WRF_CHEM 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-324
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 7 January 2019
c© Author(s) 2019. CC BY 4.0 License.



18 

 

output_attributes = 

<input_dir>/data/cmaq_global_attributes.csv 

Path to the file that contains the global attributes that need to 

be included in the output NetCDF file according to the 

corresponding chemical transport model 

domain_type= lcc Defines the grid projection on which the emission fields will 

be generated. Options are: 

 global: regular lat-lon grid 

 rotated: rotated lat-lon grid 

 lcc: lambert conformal conic grid 

 mercator: mercator grid 
vertical_description = <input_dir>/data/profiles/vertical/ 

vert.csv 

Path to the file that contains the vertical description of the 

desired output 

aux_files_path = 

<input_dir>/data/aux_files/<domain_type>_<res> 

Path to the directory where the necessary auxiliary files (e.g. 

timezones file) will be created if they do not exist. If they 

already exist, HERMESv3_GR will just read them 

# if domain_type == global: 

    inc_lat = 0.5 

    inc_lon = 0.703125 

Parameters that define a global regular lat-lon grid: 

 inc_lat: Latitudinal grid resolution (degrees) 

 inc_lon: Longitudinal grid resolution (degrees). 

# if domain_type == rotated: 

    centre_lat = 35 

    centre_lon = 20 

    west_boundary = -51 

    south_boundary = -35 

    inc_rlat = 0.1 

    inc_rlon = 0.1 

Parameters that define a regional rotated lat-lon grid: 

 centre_lat = Central geographic latitude of the grid 

(non-rotated degrees).  

 centre_lon = Central geographic longitude of grid 

(non-rotated degrees, positive east). 

 west_boundary = Grid's western boundary from 

center point (rotated degrees). 

 south_boundary = Grid's southern boundary from 

center point (rotated degrees). 

 inc_rlat = Latitudinal grid resolution (rotated 

degrees). 

 inc_rlon = Longitudinal grid resolution (rotated 

degrees). 

# if domain_type == lcc: 

    lat_1 = 37 

    lat_2 = 43 

    lon_0 = -3 

    lat_0 = 40 

    nx = 278 

    ny = 298 

    inc_x = 1000 

    inc_y = 1000 

    x_0 = 253151.59375 

    y_0 = 43862.90625 

Parameters that define a regional lambert conformal conic 

grid: 

 lat_1 = Standard parallel 1 (in degrees). 

 lat_2 = Standard parallel 2 (in degrees). 

 lon_0 = Longitude of the central meridian (in 

degrees). 

 lat_0 = Latitude of the origin of the projection (in 

degrees). 

 nx = Number of grid columns. 

 ny = Number of grid rows. 

 inc_x = X-coordinate cell dimension (in meters). 

 inc_y = Y-coordinate cell dimension (in meters). 

 x_0 = X-coordinate origin of grid (in meters). 

 y_0 = Y-coordinate origin of grid (in meters). 
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# if domain_type == mercator: 

    lat_ts = -2.84 

    lon_0 = -79.16 

    nx = 99 

    ny = 81 

    inc_x = 1000 

    inc_y = 1000 

    x_0 = -49500.13899 

    y_0 = -355986.692 

Parameters that define a regional lamber conformal conic grid: 

 lat_ts = Latitude of true scale (in degrees). 

 lon_0 = Longitude of projection center (in degrees). 

 nx = Number of grid columns. 

 ny = Number of grid rows. 

 inc_x = X-coordinate cell dimension (in meters). 

 inc_y = Y-coordinate cell dimension (in meters). 

 x_0 = X-coordinate origin of grid (in meters). 

 y_0 = Y-coordinate origin of grid (in meters). 
[EMISSION_INVENTORY_CONFIGURATION]  

cross_table = <input_dir>/conf/EI_conf.csv Defines the path to the emission inventory configuration file 

[EMISSION_INVENTORY_PROFILES]  

p_vertical = 

<input_dir>/data/profiles/vertical/vert_prof.csv 

Defines the path to the file that contains the vertical profiles. 

p_month = 

<input_dir>/data/profiles/temporal/month.csv 

Defines the path to the file that contains the monthly temporal 

profiles. 

p_day = <input_dir>/data/profiles/temporal/day.csv Defines the path to the file that contains the daily temporal 

profiles. 
p_hour = <input_dir>/data/profiles/temporal/hour.csv Defines the path to the file that contains the hourly temporal 

profiles. 
p_speciation = 

<input_dir>/data/profiles/speciation/spec_cb05aero5.csv 

Defines the path to the file that contains the speciation 

profiles. 
molecular_weights = 

<input_dir>/data/profiles/speciation/MW.csv 

Defines the path to the file that contains the molecular weights 

of the input pollutant species.  
world_info = 

<input_dir>/data/profiles/temporal/tz_iso3166.csv 
Defines the path to the file that contains the mapping between 

worldwide time zones and country ISO3 codes. This file is 

used to create the time zone grid for the temporal 

disaggregation of the emissions. 
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Table 1: Summary of the input emission inventories currently available in the HERMESv3_GR library. 

Name Sources 
Spatial resolution / 

coverage 

Temporal resolution / 

coverage 
Pollutant species Reference 

EDGARv4.3.2_AP Anthropogenic Global (0.1x0.1) 
Annual (1970 – 2012) 

Monthly (2010) 

NOx, CO, SO2, NH3, NMVOC, 

PM10, PM2.5, OC, BC 
Cripa et al. (2018) 

EDGARv4.3.2_VOC Anthropogenic Global (0.1x0.1) 
Annual (1970 – 2012) 

Monthly (2010) 
GEIA 25 NMVOC groups Huang et al. (2017) 

CEDS Anthropogenic Global (0.5x0.5) Monthly (1851 – 2014) 
NOx, CO, SO2, NH3, NMVOC (and 
the GEIA 25 NMVOC groups), OC, 

BC 

Hoesly et al. (2018) 

ECLIPSEv5.a Anthropogenic Global (0.5x0.5) Monthly (1990 - 2050) 
NOx, CO, SO2, NH3, NMVOC, 

PM10, PM2.5, OC, BC 
Klimont et al. (2017) 

HTAPv2.2 Anthropogenic Global (0.1x0.1) Monthly (2008 and 2010) 
NOx, CO, SO2, NH3, NMVOC (and 

the GEIA 25 NMVOC groups (1)), 

PM10, PM2.5, OC, BC 

Janssens-Maenhout et al. 

(2015) 

GFASv1.2 Biomass burning Global (0.1x0.1) Daily (2012-present) 

NOx, CO, SO2, NH3, PM2.5, OC, BC, 
CH3OH, C2H5OH, C3H8, C2H4, 

C3H6, C5H8, terpenes, hi alkenes, hi 

alkanes, CH2O, C2H4O, C3H6O, 
C2H6S, C2H6, C7H8, C6H6, C8H10, 

C4H8, C5H10, C6H12, C8H16, 

C4H10, C5H12, C6H14, C7H16 

Kaiser et al. (2012) 

Carn_etal 
Volcanoes 

(degassing) 
Point sources (lat-lon) Annual (2005 – 2015) SO2 Carn et al. (2017) 

Wiedinmyer_etal 
Open air trash 

burning 
Global (0.1x0.1) Annual (2010) 

NOx, CO, SO2, NH3, PM10, PM2.5, 
OC, BC, C2H2, C2H4, C3H6, C6H6, 

CH2O, CH3COOH, CH3OH, HCL 

Wiedinmyer et al. (2014) 

TNO_MACC-iii Anthropogenic 
Regional 

(0.0625*0.125) 
Annual (2000 – 2011) 

NOx, CO, SO2, NH3, NMVOC (and 

the GEIA 25 NMVOC groups (2)), 

PM10, PM2.5, OC, BC 

Kuenen et al. (2014) 

EMEP Anthropogenic Regional (0.1x0.1) Annual (2000 – 2016)  
NOx, CO, SO2, NH3, NMVOC, 

PM10, PM2.5 
Mareckova et al. (2017) 

(1) Based on the NMVOCs breakdown ratios generated for the RETRO project (Schultz et al., 2007) 
(2) Based on the NMVOCs breakdown ratios generated for the AQMEII modelling exercise (Pouliot et al., 2015) 
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Table 2: Example of speciation profiles included in HERMESv3_GR for mapping the GFASv1.2 emissions to CB05 and AERO5 

and the CEDS road transport emissions to RADM2 and MADE/SOGARM chemical mechanisms. 

GFASv1.2 CB05 + AERO5 speciation profile  CEDS road transport RADM2 + MADE/SORGAM 
speciation profile 

specie expression  specie expression 

NO 0.72*nox_no  NO nox_no2 

NO2 0.18*nox_no  CO co 

HONO 0.1*nox_no  SO2 so2 

CO co  NH3 nh3 

SO2 so2  ALD voc22 

NH3 nh3  CSL 0 

ALD2 c2h4o  ETH voc02 

ALDX 0  HC3 
0.95*voc01+voc03+voc04+0.4*vo

c09+0.69*voc18+voc20 

BENZENE c6h6  HC5 
0.05*voc01+voc05+0.43*voc06+

0.31*voc18 

ETH c2h4  HC8 0.57*voc06+voc17+voc19 

ETHA c2h6  HCHO voc21 

ETOH c2h5oh  ISO voc10 

FORM 0  KET voc23 

IOLE 0.5*hialkenes  OL2 voc07 

ISOP c5h8  OLI voc11+voc12 

MEOH ch3oh  OLT voc08 

OLE 
c8h16+c5h10+c3h6+c4h8+c6h12

+0.5*hialkanes 
 ORA1 

0.44*voc24 

PAR 

4*c4h10+6*c6h14+5*hialkanes+
6*c8h16+3*c5h10+c3h6+3*c3h6
o+2*c4h8+7*c7h16+4*c6h12+hia

lkenes+5*c5h12+1.5*c3h8 

 ORA2 

0.56*voc24 

SESQ 0  TOL 0.293*voc13+voc14 

TERP terpenes  XYL voc16+voc17 

TOL ch2o+c7h8  PM_10 0 

XYL c8h10  PM25J 0 

DMS c2h6s  PM25I 0 

HCL 0  ECJ bc*0.8 

POA 3*oc  ECI bc*0.2 

PEC 5.9*bc  ORGJ oc*0.8 

PNO3 0  ORGI oc*0.2 

PSO4 0  NO3J 0 

PMFINE 3.3*pm25-3*oc-5.9*bc  NO3I 0 

PMC 0  SO4J 0 

SULF 0  SO4I 0 
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Figure 1: Schematic representation of the general structure of HERMESv3_GR  
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Figure 2: Examples of organic carbon global emission outputs interpolated to a 0.5 by 0.7 deg global regular lat-lon domain obtained 

with HERMESv3_GR using five different versions of the emission inventory configuration file: HTAP road transport (a), HTAP 

road transport + GFAS (b), HTAP road transport with scaling factors over China (5) and India (0.5) (c), HTAP road transport 

masking out China and India (d) and ECLIPSE road transport (China and India) + HTAP road transport (rest of countries) (e).   5 
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Figure 3: Examples of the HTAPv2.2 black carbon transport emissions interpolated to a: 1 by 1.4 deg global regular lat-lon domain 

(a), 0.1 by 0.1 deg rotated lat-lon domain (b), 50 by 50 km mercator grid (c) and 4 by 4 km lambert conformal conic grid (d). All 

maps are displayed in an Equirectangular projection. 

  5 
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Figure 4: Schematic representation of the emission vertical distribution process implemented within HERMESv3_GR. Left side 

shows an example of a vertical profile description (“V001”), which allocates 10% of emissions between 100 and 200 m.a.g.l. and the 

remaining 90% between 200 and 1000 ma.g.l.. Right side shows an example of the vertical description of the domain. Original 

vertical weights are interpolated to the model vertical layers according to their thickness. 5 

  

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-324
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 7 January 2019
c© Author(s) 2019. CC BY 4.0 License.



33 

 

 

Figure 5: Global hourly NOx transport emissions [mol·s-1·m-2] estimated with HERMESv3_GR at 00:00h (a), 06:00h (b), 12:00h 

(c) and 18:00h (d) UTC and the diurnal evolution estimated in the grid cells where different global cities are located (e).   
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Figure 6: Monthly NH3 agricultural soil emissions [mol·s-1·m-2] estimated with HERMESv3_GR in East Asia (0.5 by 0.7 deg) for 

March and June using the default temporal profiles reported by EDGARv432 (a and c) and a gridded temporal profile derived from 

the works of Paulot et al. (2014) and Zhang et al. (2018) (b and d), and monthly weight factors obtained in China and India for each 

case (e and f).   5 
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Figure 7: Schematic representation of the parallelization of the emission core module of HERMESv3_GR (top) and computational 

times obtained for each functionality (regrid, vertical, temporal, speciation and writing) for the scalability test performed (bottom). 

The destination working domain is divided into vertical sections, according to the number of processors to be used (P_0, P_1, …). 

Vertical (v0, v1, …) and temporal (t0, t1, …) weight factors are applied to each section in order to transform the 2D arrays (longitude, 5 
latitude) into 4D arrays (time, vertical layer, longitude, latitude). 
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